
september 2025

RP2040 asm notation in noForth t
Register names in noForth
General instruction format
Addressing
Assembly in the forth environment
Overview of the assembler instructions in noForth t

Register names in noForth
Take care:
In noForth SP is the data stack pointer (R1), RP is the return stack pointer (R13).

IP SP W TOS HOP DAY SUN MOON Lo-registers
R0 R1 R2 R3 R4 R5 R6 R7

IP noForth instruction pointer
SP data stack pointer
TOS top of data stack

W HOP DAY SUN and MOON are used by noForth but you can use them freely in CODE
definitions.

WW XX YY ZZ DOES RP LR PC Hi-registers
R8 R9 R10 R11 R12 SP LR PC

DOES address of DOES> routine
RP return stack pointer
LR link register
PC program counter

WW XX YY AND ZZ are not used by noForth.

General instruction format
• Operands are separated by spaces instead of commas.
• The instruction name comes after the operands.
• Instruction names get a comma at the end.

tos day ands, ANDS R3,R5

Addressing
See also the Overview at the end of this document.

Indirect addressing for loads and stores

tos FF # adds, ADDS R3,#0xFF
day sun moon r) R5,[R6,R7]
day sun 8 #) R5[R6,#8]
{ day sun moon } {R5,R6,R7}

R) #) and # are there for readability, they are optional and can be omitted.

Assembly in the forth environment
Code definition

(1) CODE CELL+ (adr -- adr+4)
(2) tos 1 cells # adds, \ tos ← tos+4
(3) NEXT,
(4) END-CODE

1) CODE starts an assembly definition with the name CELL+ .
2) Assembly code. Note that you may use forth words between assembly words:
 1 CELLS leaves 4 on the stack.
3) NEXT, compiles the return to the caller of the word CELL+ .
4) END-CODE does some stack tests. When there is no error the new word CELL+
 will be included in the dictionary so that it can be found and used.

Postincrement)+ Predecrement -) Zero offset)

code DROP (x --)
 tos sp)+ ldr, \ tos ← sp) sp ← sp+4
 next,
end-code

code DUP (x -- x x)
 tos sp -) str, \ sp ← sp-4 sp) ← tos
 next,
end-code

code SWAP (x y -- y x)
 day sp) ldr, \ day ← sp)
 tos sp) str, \ sp) ← tos
 tos day movs, next,
end-code

Control flow

These nestable structures are present in the noForth assembler:

condition if, .. then,
condition if, .. else, .. then,
begin, .. condition while, .. repeat,
begin, .. condition until,
ahead, .. then,
begin, .. again,

The words IF, UNTIL, and WHILE, - preceded by a condition - assemble a conditional branch.
These conditions are possible:

=? \ equal? | equal to zero?
CS? \ carry set?
NEG? \ negative?
VS? \ signed overflow?
U>? \ unsigned > ?
<? \ signed < ?
>? \ signed > ?

NO after a condition inverts the condition.

This means you no longer have to think about processor branch instructions
and their labels. Examples:

code MIN (x y -- z)
 day sp)+ ldr, \ day ← sp) sp ← sp+4
 tos day cmp,
 >? if, \ tos greater than day?
 tos day mov, \ tos ← day

then, next,
end-code

code FILL (adr len ch --)
 day sp) ldr, \ day ← len
 sun sp 4 #) ldr, \ sun ← adr
 sp 8 # adds, \ sp ← sp+8

begin,
 day 0 # cmp,
 =? no while, \ day is not zero?
 tos sun) strb, \ sun) ← ch
 day 1 # subs, \ -day ← day-1
 sun 1 # adds, \ sun ← sun+1

repeat,
 tos sp)+ ldr, next, \ tos ← sp) sp ← sp+4
end-code

Literal pool

The immediate literal # cannot handle large immediate numbers.
That's why we create a literal pool.

create set-msb (x1 -- x2)
 hx 80000000 , \ a very small literal pool
code> day w) ldr,
 tos day orrs, next,
end-code

The execution of SET-MSB will start just after CODE> while the pool address is available in
register W. It is up to you to decide how to access the data through W.

With (DATA and DATA) a literal pool can be inserted at any place in any assembly code,
for example in a ROUTINE or interrupt, see noforth documentation.pdf . After DATA) the
pool address is available in register W.

routine PIN-IRQ (--) \ All numbers are in hex
 { w day sun lr } push,
(data 2 bitmask 200 * , \ GPIO2 clear mask
 400140F0 , \ Raw interrupt 0 address
 19 bitmask , \ GPIO25 bit masker
 D000001C , \ Output GPIO_XOR address
data)
 w { day sun } ldm, day sun) str, \ Reset GPIO2
 w { day sun } ldm, day sun) str, \ Toggle GPIO25
 { w day sun pc } pop,
end-code

https://home.hccnet.nl/anij/nof/noforth%20documentation.pdf
https://home.hccnet.nl/anij/nof/noforth%20documentation.pdf

The ARMv6-M M0+ instructions in noForth t
✈ Overview - see the ARMv6-M Architecture Reference Manual for more information.

Only Lo-registers can be used unless explicitly stated otherwise.
Instructions fit into 16 bits. Exceptions are marked with "(32)".

Move noforth traditional cycles
rd ← rm rd rm movs, MOVS Rd,Rm 1
rd ← i rd i # movs, MOVS Rd,#i 1 8-bit i=0,1..FF
rd ← rm rd rm mov, MOV Rd,Rm 1 any reg.
pc ← rm pc rm mov, MOV PC,Rm 2 any reg. rm

Load
• offset in i:
word rd rn i #) ldr, LDR Rd,[Rn,#i] 2/1* 5-bit i=0,4..7C
halfword rd rn i #) ldrh, LDRH Rd,[Rn,#i] 2/1* 5-bit i=0,2..3E
byte rd rn i #) ldrb, LDRB Rd,[Rn,#i] 2/1* 5-bit i=0,1..1F
rp-relative rd rp i #) ldr, LDR Rd,[SP,#i] 2/1* 5-bit i=0,4..7C
pc-relative rd pc i #) ldr, LDR Rd,[PC,#i] 2/1* 8-bit i=0,4..3FC
• offset in rm:
word rd rn rm r) ldr, LDR Rd,[Rn,Rm] 2/1*
halfword rd rn rm r) ldrh, LDRH Rd,[Rn,Rm] 2/1*
halfw. signed rd rn rm r) ldrsh, LDRSH Rd,[Rn,Rm] 2/1*
byte rd rn rm r) ldrb, LDRB Rd,[Rn,Rm] 2/1*
byte signed rd rn rm r) ldrsb, LDRSB Rd,[Rn,Rm] 2/1*
2/1* -- 2 if to AHB interface or SCS, 1 if to single-cycle I/O port.

Store
• offset in i:
word rd rn i #) str, STR Rd,[Rn,#i] 2/1* 5-bit i=0,4..7C
halfword rd rn i #) strh, STRH Rd,[Rn,#i] 2/1* 5-bit i=0,2..3E
byte rd rn i #) strb, STRB Rd,[Rn,#i] 2/1* 5-bit i=0,1..1F
rp-relative, rd rp i #) str, STR Rd,[SP,#i] 2/1* 5-bit i=0,4..7C
• offset in rm:
word rd rn rm r) str, STR Rd,[Rn,Rm] 2/1*
halfword rd rn rm r) strh, STRH Rd,[Rn,Rm] 2/1*
byte rd rn rm r) strb, STRB Rd,[Rn,Rm] 2/1*
2/1* -- 2 if to AHB interface or SCS, 1 if to single-cycle I/O port.

Load and Store multiple registers
excl. base rn { list } ldm, LDM Rn!,{list} 1+n*
 rn { list } stm, STM Rn!,{list} 1+n*
 { list } pop, POP {list} 1+n*
with return { list pc } pop, POP {list,PC} 3+n*
 { list } push, PUSH {list} 1+n*
with link reg. { list lr } push, PUSH {list,LR} 1+n*
n* -- n is the number of elements in the list including PC or LR.

Add noforth traditional cycles
rd ← rn+rm rd rn rm adds.mv, ADDS Rd,Rn,Rm 1
rd ← rd+rm rd rm adds, ADDS Rd,Rd,Rm 1
rd ← rn+i rd rn i # adds.mv, ADDS Rd,Rn,#i 1 3-bit i=0,1..7
rd ← rd+i rd i # adds, ADDS Rd,Rd,#i 1 8-bit i=0,1..FF
rp ← rp+i rp i # add, ADD SP,SP,#i 1 7-bit i=0,4..1FC
rd ← rd+rm rd rm add, ADD Rd,Rd,Rm 1 any reg. rm
any reg. to pc pc rm add, ADD PC,PC,Rm 2
with carry rd rm adcs, ADCS Rd,Rd,Rm 1

rd ← rp+i rd rp i # add, ADD Rd,SP,#i 1 8-bit i=0,4..3FC
rd ← pc+i rd pc i # add, ADR Rd,label 1 8-bit i=0,4..3FC

Subtract
rd ← rn-rm rd rn rm subs.mv, SUBS Rd,Rn,Rm 1
rd ← rd-rm rd rm subs, SUBS Rd,Rd,Rm 1
rd ← rn-i rd rn i # subs.mv, SUBS Rd,Rn,#i 1 3-bit i=0,1..7
rd ← rd-i rd i # subs, SUBS Rd,Rd,#i 1 8-bit i=0,1..FF
with carry rd rm sbcs, SBCS Rd,Rd,Rm 1
rp ← rp-i rp i # sub, SUB SP,SP,#i 1 7-bit i=0,4..1FC
rd ← 0-rn rd rn neg, RSBS Rd,Rn,#0 1

Multiply
rd ← rd*rm rd rm muls, MULS Rd,Rm,Rd 1

Compare
 rn i # cmp, CMP Rn,#i 1 8-bit i=0,1..FF
any reg. rn rm cmp, CMP Rn,Rm 1
negative rn rm cmn, CMN Rn,Rm 1
AND test rn rm tst, TST Rn,Rm 1

Logical (bitwise)
rd ← rd AND rm rd rm ands, ANDS Rd,Rd,Rm 1
exclusive OR rd rm eors, EORS Rd,Rd,Rm 1
OR rd rm orrs, ORRS Rd,Rd,Rm 1
bit clear rd rm bics, BICS Rd,Rd,Rm 1
move NOT rd rm mvns, MVNS Rd,Rm 1

Shift and Rotate
• number of shifts in i:
logical l.shift rd rm i # lsls.mv, LSLS Rd,Rm,#i 1 5-bit i=0,1..1F
logical r.shift rd rm i # lsrs.mv, LSRS Rd,Rm,#i 1
arithm. r.shift rd rm i # asrs.mv, ASRS Rd,Rm,#i 1
logical l.shift rd i # lsls, LSLS Rd,Rm,#i 1 5-bit i=0,1..1F
logical r.shift rd i # lsrs, LSRS Rd,Rm,#i 1
arithm. r.shift rd i # asrs, ASRS Rd,Rm,#i 1
• number of shifts in rs:
logical l.shift rd rs lsls, LSLS Rd,Rd,Rs 1
logical r.shift rd rs lsrs, LSRS Rd,Rd,Rs 1
arithm. r.shift rd rs asrs, ASRS Rd,Rd,Rs 1
rotate right rd rs rors, RORS Rd,Rd,Rs 1

Branch noforth traditional cycles
conditional =? if,etc. Bcc label 1/2*
jump ahead,etc. B label 2
with link addr bl, BL label 3 (32)
with exchange rm bx, BX Rm 2
with link and exchange rm blx, BLX Rm 2
1/2* -- 2 if taken, 1 if not-taken.

Extend
signed halfword to word rd rm sxth, SXTH Rd,Rm 1
signed byte to word rd rm sxtb, SXTB Rd,Rm 1
unsigned halfword rd rm uxth, UXTH Rd,Rm 1
unsigned byte rd rn uxtb, UXTB Rd,Rm 1

Reverse
reverse bytes in word rd rm rev, REV Rd,Rm 1
• byteswap in:
both halfwords rd rm rev16, REV16 Rd,Rm 1
signed bottom half word rd rm revsh, REVSH Rd,Rm 1

State
change supervisor call i # svc, SVC #i *
disable interrupts cpsid, CPSID 1
enable interrupts cpsie, CPSIE 1
read special register rd spec mrs, MRS Rd,spec 3 (32)
write special register spec Rn msr, MSR spec,Rn 3 (32)
breakpoint i # bkpt, BKPT,#i *
* -- Cycle count depends on processor and debug configuration.

Hint
send-event sev, SEV 1
wait for event wfe, WFE 2*
wait for interrupt wfi, WFI 2*
yield yield, YIELD 1*
no operation nop, NOP 1?
1? -- NOP is not reliable for timing issues.
* -- Excludes time spent waiting for an interrupt or event.

Barriers
instruction sync. isb, ISB 3 (32)
data memory dmb, DMB 3 (32)
data synchronization dsb, DSB 3 (32)
<>

