september 2025

RP2040 asm notation in noForth t

Register names in noForth

General instruction format

Addressing

Assembly in the forth environment

Overview of the assembler instructions in noForth t

Register names in noForth

Take care:
In noForth SP is the data stack pointer (R1), RP is the return stack pointer (R13).

IP SP W TOS HOP DAY SUN MOON Lo-registers
RO RL R2 R3 R4 R5 R6 R7

I[P noForth instruction pointer
SP data stack pointer
TOS top of data stack

W HOP DAY SUN and MOON are used by noForth but you can use them freely in CODE
definitions.
N

WW XX YY ZZ DOES RP LR PC Hi-registers
R8 R9 R10 R11 R12 SP LR PC

\

DOES address of DOES> routine

RP return stack pointer
LR link register
PC program counter

WW XX YY AND ZZ are not used by noForth.

General instruction format

* Operands are separated by spaces instead of commas.
¢ The instruction name comes after the operands.
e Instruction names get a comma at the end.

tos day ands, ANDS R3,R5

Addressing

See also the Overview at the end of this document.

Indirect addressing for loads and stores

tos FF # adds, ADDS R3,#0xFF
day sun moon r) R5, [R6,R7]
day sun 8 #) R5[R6, #8]

{ day sun moon } {R5,R6,R7}

R) #) and # are there for readability, they are optional and can be omitted.

Assembly in the forth environment
Code definition

(1) CODE CELL+ C adr -- adr+4)

2 tos 1 cells # adds, \ tos « tos+4
C3®» NEXT,

(4) END-CODE

1) CODE starts an assembly definition with the name CELL+ .

2) Assembly code. Note that you may use forth words between assembly words:
1 CELLS leaves 4 on the stack.

3) NEXT, compiles the return to the caller of the word CELL+ .

4) END-CODE does some stack tests. When there is no error the new word CELL+
will be included in the dictionary so that it can be found and used.

Postincrement)+ Predecrement -) Zero offset)

code DROP (x --)
tos sp)+ ldr, \ tos <« sp) sp « sp+4
next,

end-code

code DUP (x -- x x)
tos sp -) str, \ sp « sp-4 sp) « tos
next,

end-code

code SWAP (xy --y x)

day sp) 1ldr, \ day < sp)
tos sp) str, \ sp) « tos
tos day movs, next,

end-code

Control flow

These nestable structures are present in the noForth assembler:

condition if, .. then,

condition if, .. else, .. then,
begin, .. condition while, .. repeat,
begin, .. condition until,

ahead, .. then,

begin, .. again,

The words IF, UNTIL, and WHILE, - preceded by a condition - assemble a conditional branch.
These conditions are possible:

=7 \ equal? | equal to zero?
Ccs? \ carry set?

NEG? \ negative?

VS? \ signed overflow?

U>? \ unsignhed > ?

<? \ signed < ?

>7? \ signed > ?

NO after a condition inverts the condition.

This means you no longer have to think about processor branch instructions
and their labels. Examples:

code MIN (xy -- z)

day sp)+ ldr, \ day < sp) sp « sp+4
tos day cmp,
>? if, \ tos greater than day?
tos day mov, \ tos « day
then, next,
end-code

code FILL (adr len ch --)

day sp) ldr, \ day « len
sun sp 4 #) ldr, \ sun <« adr
sp 8 # adds, \ sp « sp+8
begin,
day @ # cmp,
=? no while, \ day is not zero?
tos sun) strb, \ sun) < ch
day 1 # subs, \ -day « day-1
sun 1 # adds, \ sun « sun+l
repeat,
tos sp)+ ldr, next, \ tos « sp) sp « sp+4
end-code
Literal pool

The immediate literal # cannot handle large immediate numbers.
That's why we create a literal pool.

create set-msb (x1 -- x2)

hx 80000000 |, \ a very small literal pool
code> day w) 1ldr,

tos day orrs, next,
end-code

The execution of SET-MSB will start just after CODE> while the pool address is available in
register W. It is up to you to decide how to access the data through W.

With (DATA and DATA) a literal pool can be inserted at any place in any assembly code,
for example in a ROUTINE or interrupt, see noforth documentation.pdf . After DATA) the
pool address is available in register W.

routine PIN-IRQ C--) \ All numbers are in hex
{ w day sun 1r } push,
(data 2 bitmask 200 * | \ GPIO2 clear mask

400140F0 , \ Raw interrupt @ address
19 bitmask , \ GPIO25 bit masker
D00001C , \ Output GPIO_XOR address

data)
w { day sun } ldm, day sun) str, \ Reset GPIOZ2
w { day sun } 1dm, day sun) str, \ Toggle GPI025
{ w day sun pc } pop,

end-code

https://home.hccnet.nl/anij/nof/noforth%20documentation.pdf
https://home.hccnet.nl/anij/nof/noforth%20documentation.pdf

The ARMv6-M MO+ instructions in noForth t

2+ Overview - see the ARMv6-M Architecture Reference Manual for more information.

Only Lo-registers can be used unless explicitly stated otherwise.
Instructions fit into 16 bits. Exceptions are marked with "(32)".

Move noforth traditional cycles

rd < rm rd rm movs, MOVS Rd,Rm 1

rd « i rd i # movs, MOVS Rd,#i 1 8-bit i=0,1..FF
rd «— rm rd rm mov, MOV Rd,Rm 1 any reg.

pC « rm pc rm mov, MOV PC,Rm 2 any reg. rm
Load

® offset in 1i:

word rd rn i #) 1ldr, LDR Rd,[Rn,#i] 2/1* 5-bit i=0,4..7C
halfword rd rn 1 #) 1ldrh, LDRH Rd, [Rn,#i] 2/1* 5-bit 1=0,2..3E
byte rd rn 1 #) 1ldrb, LDRB Rd, [Rn,#i] 2/1* 5-bit 1=0,1..1F
rp-relative rd rp 1 #) 1dr, LDR Rd,[SP,#i] 2/1* 5-bit i=0,4..7C
pc-relative rd pc i #) ldr, LDR Rd, [PC,#i] 2/1* 8-bit i=0,4..3FC
® offset in rm:

word rd rn rm r) 1ldr, LDR Rd,[Rn,Rm] 2/1%

halfword rd rn rm r) ldrh, LDRH Rd, [Rn,Rm] 2/1%

halfw. signed rd rn rm r) ldrsh, LDRSH Rd,[Rn,Rm] 2/1%*

byte rd rn rm r) ldrb, LDRB Rd, [Rn,Rm] 2/1%

byte signed rd rn rm r) ldrsb, LDRSB Rd,[Rn,Rm] 2/1%

2/1* -- 2 if to AHB interface or SCS, 1 if to single-cycle 1/O port.

Store

® offset in 1i:

word rd rn i #) str, STR Rd, [Rn,#i] 2/1* 5-bit 1=0,4..7C
halfword rd rn i #) strh, STRH Rd, [Rn,#i] 2/1* 5-bit i=0,2..3E
byte rd rn 1 #) strb, STRB Rd, [Rn,#i] 2/1* 5-bit 1=0,1..1F
rp-relative, rd rp i #) str, STR Rd, [SP,#i] 2/1* 5-bit i=0,4..7C
® offset in rm:

word rd rn rm r) str, STR Rd, [Rn,Rm] 2/1%

halfword rd rn rm r) strh, STRH Rd, [Rn,Rm] 2/1%

byte rd rn rm r) strb, STRB Rd, [Rn,Rm] 2/1%

2/1* -- 2 if to AHB interface or SCS, 1 if to single-cycle 1/O port.

Load and Store multiple registers

excl. base rn { list } 1ldm, LDM Rn!,{list} 1+n*
rn { list } stm, STM Rn!,{list} l+n*
{ list } pop, POP {list} 1+n*
with return { 1list pc } pop, POP {list,PC} 3+n*
{ 1list } push, PUSH {list} 1+n*
with link reg. { list 1r } push, PUSH {1list,LR} l+n*

n* -- n is the number of elements in the list including PC or LR.

Add

rd
rd
rd
rd

rn+rm
rd+rm
rn+i
rd+i

rp rp+i

rd rd+rm
any reg. to pc
with carry

(R N

rd — rp+i
rd — pc+i

Subtract

rd «
rd «
rd «< rn-i
rd « rd-i
with carry
rp « rp-i
rd — 0-rn

Multiply

rd — rd*rm

rn-rm
rd-rm

Compare

any reg.
hegative
AND test

noforth

rd
rd
rd
rd
rp
rd
pc
rd

rd
rd

rd
rd
rd
rd
rd
rp
rd

rd

rn
rn
rn
rn

rn rm adds.mv,
rm adds,

rn i # adds.mv,

i # adds,
i # add,
rm add,
rm add,
rm adcs,

rp i # add,
pc i # add,

rn rm subs.mv,
rm subs,

rn i # subs.mv,

i # subs,
rm sbcs,
i # sub,
rn neg,

rm muls,

i# cmp,
rm cmp,
rm cmn,
rm tst,

Logical (bitwise)

rd — rd AND rm

exclusive OR
OR

bit clear
move NOT

rd rm ands,
rd rm
rd rm
rd rm
rd rm

eors,
orrs,
bics,
mvns,

Shift and Rotate

® number of shifts in i:
logical 1l.shift
logical r.shift
shift
logical 1l.shift
logical r.shift
shift

arithm. r.

arithm. r.

rd
rd
rd
rd
rd
rd

rm i # 1sls.mv,
rm i # lsrs.mv,
rm i # asrs.mv,
i # 1sls,
i # lsrs,
i # asrs,

® number of shifts in rs:

logical 1l.shift
logical r.shift
r.shift

arithm,
rotate right

rd
rd
rd
rd

rs 1lsls,
rs lsrs,
rs asrs,
rs rors,

traditional

ADDS Rd,Rn,Rm
ADDS Rd,Rd,Rm
ADDS Rd,Rn,#i
ADDS Rd,Rd,#i
ADD SP,SP,#i
ADD Rd,Rd,Rm
ADD PC,PC,Rm
ADCS Rd,Rd,Rm

ADD Rd,SP,#i
ADR Rd,label

SUBS Rd,Rn,Rm
SUBS Rd,Rd,Rm
SUBS Rd,Rn,#i
SUBS Rd,Rd,#i
SBCS Rd,Rd,Rm
SUB SP,SP,#i
RSBS Rd,Rn,#0@

MULS Rd,Rm,Rd

CMP Rn,#i
CMP Rn,Rm
CMN Rn,Rm
TST Rn,Rm

ANDS Rd,Rd,Rm

EORS Rd,Rd,Rm
ORRS Rd,Rd,Rm
BICS Rd,Rd,Rm
MVNS Rd,Rm

LSLS
LSRS
ASRS
LSLS
LSRS
ASRS

LSLS
LSRS
ASRS
RORS

cycles

= mBNPRPRPRPPRRR

=

PR R PP

PRrRPRRE

Rd,Rm, #i
Rd,Rm, #i
Rd,Rm, #i
Rd,Rm, #i
Rd,Rm, #i
Rd,Rm, #i

Rd,Rd,Rs
Rd,Rd,Rs
Rd,Rd,Rs
Rd,Rd,Rs

PR R R R

S

3-bit i=0,1..7
8-bit i=0,1..FF
7-bit i=0,4..1FC
any reg. rm

8-bit
8-bit

..3FC
=0,4..3FC

3-bit
8-bit

7-bit 1 .. 1FC

8-bit i=0,1..FF

5-bit i=0,1..1F

5-bit i=0,1..1F

Branch

conditional

jump

with 1link

with exchange

with 1ink and exchange
1/2* -- 2 if taken, 1 if not-taken.

Extend

signed halfword to word
signed byte to word
unsigned halfword
unsigned byte

Reverse

reverse bytes in word

® byteswap in:

both halfwords

signed bottom half word

State

change supervisor call
disable interrupts
enable interrupts

read special register
write special register
breakpoint

* -- Cycle count depends on processor

Hint

send-event

wait for event
wait for interrupt
yield

no operation

noforth

=? if,etc.
ahead,etc.
addr bl,
rm bx,

rm blx,

rd rm sxth,
rd rm sxtb,
rd rm uxth,
rd rn uxtb,

rd rm rev,

rd rm revle,
rd rm revsh,

i # svc,
cpsid,
cpsie,

rd spec mrs,
spec Rn msr,
i # bkpt,

and debug configuration.

sev,
wfe,
wfi,
yield,
nop,

1?2 -- NOP is not reliable for timing issues.

* - Excludes time spent waiting for an interrupt or event.

Barriers

instruction sync.
data memory

data synchronization
<>

isb,
dmb,
dsb,

traditional

Bcc label
B label
BL Tlabel
BX Rm
BLX Rm

SXTH Rd,Rm
SXTB Rd,Rm
UXTH Rd,Rm
UXTB Rd,Rm

REV Rd,Rm

REV16 Rd,Rm
REVSH Rd,Rm

SVC #1i
CPSID

CPSIE

MRS Rd, spec
MSR spec,Rn
BKPT, #1

SEV
WFE
WFI
YIELD
NOP

ISB
DMB
DSB

cycles

1/2%*

2

3 (32)
2

2

S

S

w

(32
3 (32)

*

2%
2%
1%
1?7

3 (32)
3 (32)
3 (32)

